Number Theory & Cryptographic Hardness Assumptions

Jacob Benjamin Cholewa Ștefan Patachi

IT University of Copenhagen

June 2017
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Outline

Introduction

One-way functions
Prime numbers
Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
Cyclic Groups and Generators
The Discrete Logarithm
Diffie-Hellman Assumptions
Subgroups of \mathbb{Z}_p^*
Elliptic Curves
“One goal of this chapter is to introduce various problems believed to be hard, and to present conjectured one-way functions based on those problems.”

“[I]n the public-key setting all known constructions rely on hard number-theoretic problems.”
Introduction
One-way functions

The inverting experiment $\text{Invert}_{A,f}(n)$

1. Choose uniform $x \in \{0, 1\}^n$, and compute $y := f(x)$.
2. A is given 1^n and y as input, and outputs x'.
3. The output of the experiment is defined to be 1 if $f(x') = y$, and 0 otherwise.
Definition 7.1
A function $f : \{0, 1\}^* \leftarrow \{0, 1\}^*$ is one-way if the following two conditions hold:

1. **(Easy to compute:)** There exists a polynomial-time algorithm M_f computing f; that is, $M_f(x) = f(x)$ for all x.

2. **(Hard to compute):** For every probabilistic polynomial-time algorithm A, there is a negligible function $negl$ such that

$$\Pr \left[Invert_{A,f}(n) = 1 \right] \leq negl(n)$$
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Divisibility

For two integers $a, b \in \mathbb{Z}$, a divides b, written as $a \mid b$, if there exists an integer c such that $ac = b$.

The greatest common divisor of two integers a, b, written $gcd(a, b)$, is the largest integer c such that $c \mid a$ and $c \mid b$. We say that a and b are relatively prime if $gcd(a, b) = 1$.
A positive integer $p > 1$ is *prime* if it has no factors; that is, it has only two divisors: 1 and itself.

A positive integer greater than 1 that is not a prime is called a *composite*. That is because all composites can be uniquely expressed as a product of primes.

$$N = \prod p_i^{e_i}$$

where p_i are distinct primes and $e_i \geq 1$ for all i.
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Proposition 8.1
Let a be an integer and let b be a positive integer. Then there exist unique integers q, r for which $a = qb + r$ and $0 \leq r < b$.

Modulo Reduction
We define $[a \mod N]$ to be equal to this r. Note that $0 \leq [a \mod N] < N$.
We say that \(a \) and \(b \) are congruent modulo \(N \), written as \(a \equiv b \mod N \), if \([a \mod N] = [b \mod N]\). Note that \(a \equiv b \mod N \) if and only if \(N \mid (a - b) \).

Example

\[
36 \equiv 21 \mod 15 \text{ as } 15 \mid (36 - 21).
\]

Congruence modulo is an equivalence functions as it is reflexive (\(\forall a, a \equiv a \mod N \)), symmetric (\(a \equiv b \mod N \Rightarrow b \equiv a \mod N \)), and transitive (\(a \equiv b \mod N \land b \equiv c \mod N \Rightarrow a \equiv c \mod N \)).
Modular Arithmetic

Congruence Modulo

Congruence module respects addition and multiplication

Example

\[[25 \cdot 2 \mod 5] = [25 \mod 5] \cdot [2 \mod 5] = 25 \cdot 2 \equiv 50 \mod 5 \]
Modular Arithmetic

Congruence Modulo

Congruence module does not (in general) respect division.

Example

\[3 \cdot 2 \equiv 6 \equiv 15 \cdot 2 \mod 24, \text{ but } 3 \not\equiv 15 \mod 24. \]

However; If for a given integer \(b \) there exists an integer \(c \) such that \(bc = 1 \mod N \), then we say that \(b \) is invertible modulo \(N \), and call \(c \) a inverse of \(b \). When \(b \) is invertible then we define the inverse as \(b^{-1} \) and define division as

\[[a/b \mod N] \overset{\text{def}}{=} [ab^{-1} \mod N] \]
Proposition 8.7
Let b, N be integers, with $b \geq 1$ and $N > 1$. Then b is invertible modulo N if and only if $gcd(b, N) = 1$.
Definition 8.9
An abelian group is a finite set G, with $|G|$ denoting the order of the set, along with a binary operator \circ for which the following conditions hold:

- **(Closure:)** For all $g, h \in G$, $g \circ h \in G$.
- **(Existence of inverses:)** There exists an identity $e \in G$ such that for all $g \in G$, $e \circ g = g = g \circ e$.
- **(Associativity:)** For all $g, h, j \in G$, $(g \circ h) \circ j = g \circ (h \circ j)$.
- **(Commutativity:)** For all $g, h \in G$, $g \circ h = h \circ g$.
Groups
Additive groups

Example
Let $N > 1$ be an integer. The set $0, \ldots, N - 1$ with respect to addition modulo N is an abelian group of order N, where the identity of the group is 0. We denote this group \mathbb{Z}_N.
It is often useful to describe the group operation applied \(m \) times to a fixed element \(g \), where \(m \) is a positive integer. When using additive notation we express this \(m \cdot g \); that is

\[
m \cdot g \overset{\text{def}}{=} g + \cdots + g
\]

Thankfully, the notation adheres to familiar arithmetic rules such as:

\[
(mg) + (m'g) = g \cdot (m + m')
\]

\[
m \cdot (m'g) = g \cdot (mm')
\]

\[
1 \cdot g = g
\]
When using multiplicative notation we express this g^m; that is

$$g^m \overset{\text{def}}{=} g \cdots g$$

m times

Thankfully, the notation adheres to familiar arithmetic rules such as:

$$g^m \cdot g^{m'} = g^{m+m'}$$

$$(g^m)^{m'} = g^{mm'}$$

$$g^m \cdot h^m = (gh)^m$$

$$g^1 = g$$
Lemma 8.13
Let G be a group and $a, b, c \in G$. If $ac = bc$, then $a = b$.

Proof.
We know that $ac = bc$. Multiplying both sides with the unique inverse c^{-1} of c, we obtain $a = b$. In detail:

$$(ac)c^{-1} = (bc)c^{-1} \Rightarrow a(cc^{-1}) = b(cc^{-1}) \Rightarrow a = b$$
Theorem 8.14
Let G be a finite group, with $m = |G|$ as the order of the group. Then for any element $g \in G$, $g^m = 1$.

Proof.
Fix an arbitrary $g \in G$, and let g_1, \ldots, g_m be the elements of G. We claim that

$$g_1 \cdots g_m = (gg_1) \cdots (gg_m)$$

Remember that $gg_i = gg_j \Rightarrow g_i = g_j$. Following arithmetic rules we can ‘pull out’ all occurrences of g and obtain

$$g_1 \cdots g_m = (gg_1) \cdots (gg_m) = g^m \cdot (g_1 \cdots g_m)$$
Corollary 8.17

Let \mathbb{G} be a finite group with $m = |\mathbb{G}|$. Let $e > 0$ be an integer, and define the function $f_e : \mathbb{G} \to \mathbb{G}$ by $f_e(g) = g^e$. If $gcd(e, m) = 1$, then f_e is a permutation. Moreover, if $d = e^{-1} \mod m$, then f_d is the inverse of f_e. (Recall proposition 8.7: $gcd(e, m) = 1$ implies that e is invertible modulo m).

Proof.
Since \mathbb{G} is finite, the second part of the claim implies the first; this, we need only show that f_d is the inverse of f_e. This is true because for any $g \in \mathbb{G}$ we have

$$f_d(f_e(g)) = f_d (g^e) = (g^e)^d = g^{ed} = g$$
As discussed, the set $\mathbb{Z}_N = \{0, \ldots, N-1\}$ is a group under addition modulo N. Now we define the group under multiplication under modulo N, for any $N > 1$, to be given as

$$\mathbb{Z}_N^* \overset{\text{def}}{=} \{ b \in \{1, \ldots, N-1\} \mid \gcd(b, N) = 1 \}$$

Proposition 8.18

Let $N > 1$ be an integer. Then \mathbb{Z}_N^* is an abelian group under multiplication modulo N.
We define $\phi(N) \overset{\text{def}}{=} |\mathbb{Z}_N^*|$ to be the order of the group \mathbb{Z}_N^*. Let's first consider the case where $N = p$ is prime. Then all elements in $\{1, \ldots, p - 1\}$ are relatively prime to p, and so the order of \mathbb{Z}_p^* is given as $\phi(p) = p - 1$.

In the case where N is a composite of two primes $N = pq$, then the order of the group \mathbb{Z}_N^* is given as $\phi(N) = (p - 1)(q - 1)$ (proof is omitted for brevity).

Example

Take $N = 15 = 5 \cdot 3$. Then $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$, and $\phi(15) = (5 - 1)(3 - 1) = 8$.
Outline

Introduction
- One-way functions
- Prime numbers
- Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
- Cyclic Groups and Generators
- The Discrete Logarithm
- Diffie-Hellman Assumptions
- Subgroups of \mathbb{Z}_p^*
- Elliptic Curves
Let G be a finite group or order m, for any $g \in G$ we say:

$\langle g \rangle = \{g^0, g^1, ..., g^{i-1}\}$ is a subgroup of G with order i and $i|m$

where $i \leq m$ is the smallest positive integer with $g^i = 1$.

Properties

- if $i = m$ then $G = \langle g \rangle$ is a cyclic group.
- if G is cyclic and m is prime, then all elements of G, except 1, are generators.
Theorem 8.56
If p is prime then \mathbb{Z}_p^* is a cyclic multiplicative group of order $p - 1$.

Example 8.60
Consider the (multiplicative) group \mathbb{Z}_7^*, which is cyclic by Theorem 8.56. We have $\langle 2 \rangle = \{1, 2, 4\}$, and so 2 is not a generator. However,

$$\langle 3 \rangle = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$$

and so 3 is a generator of \mathbb{Z}_7^*.
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
The general notation of a cyclic group:

\[\mathbb{G} = \langle g \rangle = \{ g^x, \text{ for each } x \in \mathbb{Z}_q \} \]

For a random sample \(h \in \mathbb{G} \), we call \(x = \log_g h \) the discrete logarithm of \(h \) with respect to \(g \) from the context of \(\mathbb{G} \).
The discrete logarithm experiment p.319-320

- Run $G(1^n) \rightarrow (\mathbb{G}, q, g)$
- Choose $h \in \mathbb{R} \mathbb{G}$
- A is given (\mathbb{G}, q, g, h) and returns $x \in \mathbb{Z}_q$
- Experiment outputs 1 if $g^x = h$, 0 otherwise

The discrete logarithm problem is hard relative to G if for all probabilistic polynomial-time algorithms A

$$\Pr[DLog_{A,G}(n) = 1] \leq negl(n)$$
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Cyclic Groups

Diffie-Hellman Assumptions p.320-321

Computaional Diffie-Hellman

Given \((G, q, g)\) and \(h_1, h_2 \in G\), that means \(h_1 = g^{x_1}, h_2 = g^{x_2}\), it is hard to compute:

\[
DH_g(h_1, h_2) = g^{x_1 \cdot x_2} = h_1^{x_2} = h_2^{x_1}
\]

Decisional Diffie-Hellmann

Given \((G, q, g)\) and \(h_1, h_2, h' \in G\), it is hard to distinguish whether

\[
h' \neq DH_g(h_1, h_2)
\]
Definition 8.63
We say that the DDH problem is hard relative to G if for all probabilistic polynomial-time algorithms A

$$|Pr[A(G, q, g, g^x, g^y, g^z) = 1] - Pr[A(G, q, g, g^x, g^y, g^{x \cdot y}) = 1]| \leq negl(n)$$
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Theorem 8.64
Let \(p - 1 = r \cdot q \), with \(p \) and \(q \) primes. Define

\[
G = \{ [h^r \mod p] | h \in \mathbb{Z}_p^* \}
\]

Then \(G \) is a subgroup of \(\mathbb{Z}_p^* \) or order \(q \).

Proof

- \(G \) is a subgroup of \(\mathbb{Z}_p^* \)
- order of \(G \) is \(q \) if \(\exists f_r : \mathbb{Z}_p^* \rightarrow G \) and \(f_r \) is a \(r - to - 1 \) function
Properties

- because \(q \) is prime, all elements of \(G \) except 1 are generators
- to choose uniform element from \(G \):

 \[
 \text{pick } h \in \mathbb{G}, \text{ output } [h^r \mod p]
 \]

- to check if any element \(h \in \mathbb{Z}_p^* \) is also in \(G \), check

 \[
 h^q \equiv 1 \mod p
 \]
Outline

Introduction
 One-way functions
 Prime numbers
 Modular Arithmetic

Basic Group Theory

Factoring Assumption & RSA

Cyclic Groups
 Cyclic Groups and Generators
 The Discrete Logarithm
 Diffie-Hellman Assumptions
 Subgroups of \mathbb{Z}_p^*
 Elliptic Curves
Cyclic Group
Elliptic Curves p. 325-332

Definition
\[E(\mathbb{Z}_p) = \{(x, y) | x, y \in \mathbb{Z}_p \text{ and } y^2 = x^3 + Ax + B \pmod{p}\} \cup \{O\} \]

- \[P + O = O + P = P \]
- if \(P = (x, y) \) then \(-P = (x, -y) \)
- \[P - P = O \]

\[4A^3 + 27B^2 \neq 0 \pmod{p} \]
Cyclic Group
Elliptic Curves p.325-332

Calculations
To compute the addition of $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$, we calculate $P_1 + P_2 = P_3(x_3, y_3)$:

1. calculate the slope $m = \left[\frac{y_2-y_1}{x_2-x_1} \mod p \right]$
2. the line P_1P_2 is $y = m \cdot (x - x_1) + y_1 \mod p$
3. coordinates of P_3 are
 $x_3 = [m^2 - x_1 - x_2 \mod p] \& y_3 = [m(x_1 - x_3) - y_1 \mod p]$

When $P_1 = P_2$ then $2P_1 = P_3(x_3, y_3)$ where:
 ▶ $x_3 = [m^2 - 2x_1 \mod p] \& y_3 = [m(x_1 - x_3) - y_1 \mod p]$
 ▶ $m = \left[\frac{3x_1^2 + A}{2y_1} \right]$
Affine Coordinates vs. Projective coordinates

- affine coordinates: \(P = (x, y) = (X/Z \mod p, Y/Z \mod p) \)
- projective coordinates: \(P = (X, Y, Z) \)

Addition of \(P_1 + P_2 = \)

\[
P_3 = \left(m^2 - \frac{X_1}{Z_1} - \frac{X_2}{Z_2}, m \left(\frac{X_1}{Z_1} - m^2 + \frac{X_1}{Z_1} + \frac{X_2}{Z_2} \right) - \frac{Y_1}{Z_1}, 1 \right)
\]

\[
m = \frac{Y_2}{Z_2} - \frac{Y_1}{Z_1} = \frac{Y_2Z_1 - Y_1Z_2}{X_2Z_1 - X_1Z_2}
\]
Projective Coordinates

\[P_3 = (vw, u(v^2X_1Z_2 - w) - v^3Y_1Z_2, Z_1Z_2v^3) \]

\[u = Y_2Z_1 - Y_1Z_2 \]
\[v = X_2Z_1 - X_1Z_2 \]
\[w = u^2Z_1Z_2 - v^3 - 2v^2X_1Z_2 \]

Point compression

- only coordinate \(x \) is needed
- \(y \) is computable from the elliptic curve \(E : y^2 = f(x) \mod p \)
- one extra bit \(b \) needed for deciding what value \(y_b \) to use